Comparison of wavelet approximation order in different smoothness spaces

نویسندگان

  • Md. Rafiqul Islam
  • S. F. Ahemmed
  • S. M. A. Rahman
چکیده

In linear approximation by wavelet, we approximate a given function by a finite term from the wavelet series. The approximation order is improved if the order of smoothness of the given function is improved, discussed by Cohen (2003), DeVore (1998), and Siddiqi (2004). But in the case of nonlinear approximation, the approximation order is improved quicker than that in linear case. In this study we proved this assumption only for the Haar wavelet. Haar function is an example of wavelet and this fundamental example gives major feature of the general wavelet. A nonlinear space comes from arbitrary selection of wavelet coefficients, which represent the target function almost equally. In this case our computational work will be reduced tremendously in the sense that approximation error decays more quickly than that in linear case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Jackson and Bernstein inequalities for N -term approximation in sequence spaces with applications

We study N-term approximation for general families of sequence spaces, establishing sharp versions of Jackson and Bernstein inequalities. The sequence spaces used are adapted to provide characterizations of Triebel-Lizorkin and Besov spaces by means of wavelet-like systems using general dilation matrices, and thus they include spaces of anisotropic smoothness. As an application we characterize ...

متن کامل

Besov Regularity for Interface Problems

This paper is concerned with the Besov regularity of the solutions to interface problems in a segment S of the unit disk in R 2 : We investigate the smoothness of the solutions as measured in the speciic scale B s (L (S)); 1== = s=2+1=p; of Besov spaces which determines the order of approximation that can be achieved by adap-tive and nonlinear numerical schemes. The proofs are based on represen...

متن کامل

On the importance of combining wavelet-based nonlinear approximation with coding strategies

This paper provides a mathematical analysis of transform compression in its relationship to linear and non-linear approximation theory. Contrasting linear and non-linear approximation spaces, we show that there are interesting classes of functions/random processes which are much more compactly represented by wavelet-based non-linear approximation. These classes include locally smooth signals th...

متن کامل

Characterization of Sobolev Spaces of Arbitrary Smoothness Using Nonstationary Tight Wavelet Frames

In this paper we shall characterize Sobolev spaces of an arbitrary order of smoothness using nonstationary tight wavelet frames for L2(R). In particular, we show that a Sobolev space of an arbitrary fixed order of smoothness can be characterized in terms of the weighted `2-norm of the analysis wavelet coefficient sequences using a fixed compactly supported nonstationary tight wavelet frame in L...

متن کامل

Almost diagonal matrices and Besov-type spaces based on wavelet expansions

This paper is concerned with problems in the context of the theoretical foundation of adaptive (wavelet) algorithms for the numerical treatment of operator equations. It is well-known that the analysis of such schemes naturally leads to function spaces of Besov type. But, especially when dealing with equations on non-smooth manifolds, the definition of these spaces is not straightforward. Never...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006